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Abstract

A model is proposed for the description of the viscoelastic and yield behaviour of polymer fibres. It involves the introduction of activated

transitions with relaxation times that are a function of the stress. This is analogous to the introduction of an Eyring reduced time. These

transitions govern the shear deformation of a domain, being the building block of the continuous chain model for the tensile deformation of

polymer fibres. The main features of the viscoelastic behaviour of fibres have been derived. They are the rate dependence of the yield stress,

the transition from a concave creep curve for a stress below the yield stress to the logarithmic behaviour for stresses above the yield stress, the

creep rate of a fibre, the disappearance of the yield for increasing temperatures and the response to complex loadings.

q 2003 Published by Elsevier Ltd.
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1. Introduction

In a series of publications, the continuous chain model

for the tensile deformation of polymer fibres in the glassy

state has been proposed [1–4]. Subsequently, a model for

the viscoelastic deformation of the fibre has been developed,

which is based on the linear viscoelastic deformation of a

perfectly oriented domain [5–7]. It has been shown that the

creep of aramid fibres can be described by this linear

viscoelastic domain approximation.

A characteristic phenomenon in the tensile curve of a

polymer fibre is the yield. In our first investigation of the

yield we observed that the yield strain varies from 0.005 for

highly oriented fibres to about 0.025 for isotropic speci-

mens. This strain range is explained by assuming that the

yield is caused by an immediate and permanent or plastic

deformation [1]. By postulating a critical shear stress, ty; we

have demonstrated that due to a sequential orientation

process the yield strain of a fibre is a function of the degree

of chain orientation in the fibre. Furthermore it was shown

that ty ¼ fg; with 0:04 # f # 0:05 and g being the modulus

for shear parallel to the chains.

In Fig. 1, the stress versus strain curve of the PET fibre

Diolenw 174S and the PpPTA fibre Twaronw 1000 have

been depicted for several values of the strain rate. It is

observed that the yield deformation is a function of the

strain rate. In the first elastic part all the stress vs. strain

curves are identical, whereas above the yield point the stress

versus the strain follows parallel curves. The level of these

curves is an increasing function of the strain rate. Also for

isotropic polymers a temperature and strain rate dependence

of the yield deformation has been observed [8]. This has

lead to the proposal that the yield and viscoelastic

deformations of isotropic polymers are due to the same

deformation processes [9,10].

In recent studies, the relation between creep and stress

relaxation, and the response to complex loading schemes for

PpPTA and PET fibres have been studied [6,7]. From the

results of these investigations it has been concluded that the

yield and the viscoelastic deformation of a polymer fibre are

also strongly related. For example, it has been observed that

after a period of stress relaxation the initial response of the

fibre to a subsequent tensile deformation at a constant strain

rate is almost elastic. Thus initially no yield deformation

occurs. Because this behaviour cannot be explained from
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the classical theories of viscoelasticity or plasticity, it is

necessary for the understanding of the relation between

creep and stress relaxation in polymer fibres that the rela-

tion between viscoelasticity and yield has to be considered

[7,11,12].

The first attempt to describe the non-linear viscoelastic

behaviour of isotropic polymers and fibres was presented by

Tobolsky and Eyring [13,14,15]. They introduced a stress-

dependent relaxation time associated with an activated

process of movements of chain segments. In subsequent

developments this so-called Eyring dashpot has been

applied in various modifications. Bauwens used a stress

activated element to model the strain rate dependence of the

yield point [8]. Shay assumed that the yield of isotropic

polymers is caused by an acceleration of the viscoelastic

processes due to a volume increase. This acceleration is

modelled by a reduced time, tu; which is a function of the

volume [9]. In later models, the reduced time can be a

general function of the deformation. Boyce, Parks and

Argon extended the stress activated models for three

dimensional deformations [16]. Hasan and Boyce proposed

a range of activation energies to describe the distributed

nature of local plastic transitions [17]. Tervoort et al.

formulated a phenomenological constitutive model in which

a discrete spectrum of relaxation times with a single activation

energy is applied [18]. All these models refer to isotropic

glassy polymers and are characterized by plastic flow.

In an attempt to model the creep of aramid fibres by

Rogozinsky and Bazhenov the elongation of the fibre is

considered to be the result of transitions from a kinked to a

straightened conformation [19]. This conformational tran-

sition is described again by a thermoactivated process. In

order to account for the fact that the activation energy of the

transition is not constant for all chain fragments, they

introduced a range of activation energies. Plastic flow is

eliminated by assuming a limited number of transitions.

In this paper, a reduced time model, similar to the model

of Rogozinsky and Bazhenov and based on a simple Eyring

process, will be proposed for the description of the

viscoelastic and yield deformation of polymer fibres in the

glassy state. In the continuous chain model the shear

deformation of the domain involves the debonding and

reformation of secondary bonds between adjacent chains.

Due to the disorder in the microstructure the activation

energies for these mechanical transitions will be distributed.

Because of the fundamental physical relation between

relaxation times and activation energies, this results in a

range of stress activated relaxation times. This model not

only predicts the rate dependence of the yield behaviour, but

also explains the most important features of the sometimes

curious mechanical behaviour described recently [7]. It is

believed that the proposed model provides a framework for

the description of the viscoelastic and yield deformation of

polymer fibres in the glassy state, including the response to

complex loading schemes. A brief introduction to this

Eyring reduced time model has been published recently

[20].

2. A summary of the continuous chain model

The continuous chain model for the tensile deformation

of polymer fibres in the glassy state is a series model and

assumes that the deformation of the fibre is equal to the

average deformation of a polymer chain in the direction of

the fibre axis. The basic element for the calculations is a

small straight chain segment. The deformation of this chain

segment is determined by the elastic properties of the

surrounding domain. It is supposed that this domain has a

transverse isotropic symmetry with the following elastic

constants: the chain modulus ec; the transverse modulus e1;

the modulus for shear parallel to the chains g and the

Poisson ratios n12 and n13 for application of a stress normal

and parallel to the chain axis, respectively. In this series

model the tensile deformation of the fibre is brought about

by the combined effect of the elongation of the polymer

chains and the change of the orientation of the chains in the

direction of the fibre axis as exemplified by the formula for

the fibre strain e f

e f ¼
kec cos ul
kcos Ql

þ
kcos ul2 kcos Ql

kcos Ql
ð1Þ

where Q is the initial angle between the axis of a chain

segment and the fibre axis in the unloaded state, u is the

angle between a deformed chain segment and the fibre axis

and ec the tensile strain of the chain segment. The quantity

ec is a unique function of the momentary fibre tensile stress,

and u is a function of the total load history of the domain.

The average is taken over the chain orientation distribution.

The change of the orientation of a chain segment in the

direction of the fibre axis is caused by the shear deformation

of a small domain containing this chain segment. The yield

in the tensile curve of polymer fibres has been modelled by

introduction of a critical shear yield strain of the domain

and a plastic shear law. An example is given in Fig. 2. Using

this model the stress vs. strain curve of the fibre has been

calculated [5].

In the case of a linear viscoelastic simple shear

mechanism the deformation, kn; of the domain is given by

Fig. 1. The stress vs. strain curves of the PpPTA fibre Twaronw 1000 and

the PET fibre Diolenw 174S as a function of the strain rate.
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the equation

knðtÞ ¼
ðt

0
j1ðt 2 t 0Þ

› ~tðt 0Þ

›t 0
dt 0 ð2Þ

where j1ðtÞ is the viscoelastic shear compliance and the

shear stress is given by

~t ¼ 2sf

1 2
n12sf

e1

sin2 u

� �

1 þ
sf

2e1

sin2 uþ
sf

g
sin2 u

� � sin u cos u ð3Þ

where sf the fibre stress. For oriented fibres expression (3) is

well approximated by

t ¼ 2sf sin u cos u ð3aÞ

The angle u is a function of the time and given by the

formula for the shear strain of the domain

e13 ¼ tanðuðtÞ2QÞ ¼
~tðtÞ

2g
þ

1

2
knðtÞ ð4Þ

Eqs. (2)–(4) form a constitutive equation for the visco-

elastic deformation of a single domain. Together with Eq. (1)

they form a constitutive equation for viscoelastic polymer

fibres. The viscoelastic and yield deformation of the poly-

mer fibre has been described by the viscoelastic and plastic

shear deformation of the domain [5–7]. This mechanism

explains the almost linear curves of the sonic compliance vs.

strain and of the orientation parameter ksin2 ulE of the

polymer chains vs. strain during elastic, viscoelastic and

yield deformation. As the creep of many oriented fibres is

approximately proportional to the logarithm of time, a

logarithmic creep law is assumed for shear deformation of

the domain. By using this creep law it was possible to

quantitatively model the stress and modulus dependence of

the creep of PpPTA fibres [6].

The newly proposed Eyring reduced time model provides

a mechanical element for the description of the elastic,

viscoelastic and yield deformation of the domain, reducing

the viscoelastic and yield deformation to a single activated

process. The analysis will be limited to the response of a

single domain to a shear stress. The extension to the

deformation of a fibre is straightforward. It will be shown

that the observed tensile behaviour of polymer fibres as

summarised in Section 3 can be reproduced. It has not been

tried to fit the model numerically to a particular fibre. For

reasons of simplicity the responses to unloading and

dynamic loadings will not be considered here. These can

be incorporated in the future.

3. The observed tensile behaviour of polymer fibres in

the glassy state

In our previous reports on the tensile deformation of

fibres, the following observations have been made:

(1) The yield deformation of the fibre is dependent on the

strain rate. This was observed for oriented PET and

PpPTA fibres. Above the yield point the stress vs. the

strain follows parallel curves of which the levels

depend on the strain rate. This implies a similar

behaviour for the shear deformation of a single domain.

A schematic picture of the corresponding shear

deformation curves for a domain has been drawn in

Fig. 3.

(2) The creep and the stress relaxation of oriented fibres

is often approximately linear versus the logarithm of

the time The fibre creep can be described by eðtÞ ¼

e0 þ Ccreep logðtÞ and the stress relaxation by sðtÞ ¼

s0 2 Crelax logðtÞ: It has been shown that this logarith-

mic law holds particularly well for oriented PpPTA

fibres [6,7].

(3) The ratio of the logarithmic creep rate Ccreep and the

logarithmic relaxation rate Crelax; when starting both

experiments at the same initial stress s0 and initial

strain e0; is given by Crelax=Ccreep ¼ Em with Em the

derivative of the stress vs. strain curve, ds=de ; in the

point ðe0;s0Þ: This behaviour was observed for PpPTA

Fig. 2. The assumed shear stress vs. strain curve for the shear deformation

of an oriented domain.

Fig. 3. The shear stress vs. strain for the shear deformation of an oriented

domain at several values of the strain rate.
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fibres [7]. As the mechanical modulus Em depends on

the amount of yield deformation, the viscoelastic and

yield deformation are related.

(4) At a stress below the yield point the creep strain of a

polymer fibre follows a concave curve prior to the

logarithmic behaviour, as shown for PpPTA in Fig. 4.

The same can be observed for the creep of PET fibres.

(5) Stepwise increasing the creep stress, it is found that the

creep at each step is equal or even larger than the

normal creep measured at that stress, see Fig. 5. So,

increasing the stress by steps of s0; the creep due to the

third step, at a total stress of 3s0; is equal or larger than

the creep measured in a normal creep experiment at a

stress 3s0: This behaviour was observed for PpPTA

fibres and is contradictory to a superposition principle

[7].

(6) In a strain–relaxation–strain experiment the strain is

firstly increased at a constant strain rate; at a stress s0

the deformation is stopped and a relaxation experiment

is performed during a certain time t1; subsequently the

strain is increased at a constant strain rate up to failure.

The response of a Diolen 174S PET fibre to this

sequence has been plotted in Fig. 6.

Surprisingly, immediately after the relaxation period, no

yield occurs during the second period of deformation at a

constant strain rate. At a somewhat larger strain the stress

vs. strain curve continues along the normal stress vs. strain

curve of the fibre. Also this experiment shows a strong

relation between yield and viscoelastic deformation [7].

4. The Eyring reduced time model

The plastic deformation of an ideal plastic material starts

at a critical stress and is independent of the deformation rate

or temperature. Although for isotropic polymers a, rather

small, dependence on the deformation rate and the tem-

perature has been observed, the classical theory of plasticity

can be applied very well to the yield deformation of polymer

fibres in the glassy state [12]. It has been shown that the

yield in the tensile curves of polymer fibres can be described

by a simple yield criterion and a plastic deformation law for

the shear deformation of the domains [5]. The plastic

deformation is independent of the time scale of the

deformation, thus it can be regarded as an immediate

process. Once the stress has arrived at the critical stress the

plastic deformation occurs immediately, the amount of

plastic strain being independent of the deformation rate.

From the experiments of Bauwens it is known that the

deformation rate and temperature dependence of the yield

stress of poly(methyl methacrylate) or PMMA can be

described by a simple Eyring process [8]. It will be shown

Fig. 4. Below the yield point, at a tensile stress of 0.076 GPa, the initial part

of the creep strain vs. the time curve of a PpPTA fibre Twaronw follows a

concave curve.

Fig. 5. The creep rate of (a) a linear viscoelastic solid compared to (b) a

PpPTA fibre Twaronw 1000 in the step-creep experiment and in a normal

creep experiment.

Fig. 6. The stress vs. strain curve of a PET fibre Diolenw 174S in the strain–

relaxation–strain experiment compared with the normal stress vs. strain

curve of the fibre.
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that an Eyring process is also very suitable for the

description of the transition of ideal plastic, to a viscoelastic

or time dependent behaviour.

The shear deformation of a domain brings about a mutual

displacement of adjacent chains, the amount of which is

determined by the secondary bonding between the chains.

The straining of this bonding is now modelled as an

activated shear transition between two states separated by an

energy barrier U as depicted in Fig. 7a and b. In a perfect

crystal there is only a single value for U; but in semi-

crystalline and paracrystalline fibres a distribution of U may

be expected which can be associated with the energies of

the various conformations of the secondary bonds between

the chains. The occupation of state 1 is equal to N1; the

occupation of state 2 is equal to N2 and the total occupation

is equal to N1 þ N2 ¼ N: The plastic shear strain is

proportional to the decrease of the occupation of state 1 or

proportional to the increase of the occupation of state 2.

Without external stress the probability for transition from

state 1 to state 2 ðnþÞ is proportional to the Boltzmann factor

N1 exp½2U=kT�; and for the inverse transition 2 ! 1ðn2Þ

the probability is proportional to N2 exp½2U=kT�: Suppose a

shear stress t causes a linear shift ltlV of the energy of

the first state and a shift 2ltlV of the second state, V being

the activation volume. Then, the differential equation for the

occupation of state 1 is given by

dN1

dt
¼ 2N1n exp 2

ðU 2 ltlVÞ

kT

� �
þ ðN 2 N1Þn

exp 2
ðU þ ltlVÞ

kT

� �
ð5Þ

where n is the frequency associated with the motions of

chain segments at a temperature T : We assume that at t ¼ 0

N1 ¼ N2 ¼ N=2: The relaxation time d associated with the

transition is given by

1

d
¼ n exp 2

ðU 2 ltlVÞ

kT

� �
þ exp 2

ðU 2 ltlVÞ

kT

� �� �
ð6Þ

In the exponential function, the absolute value of t is

introduced, because the energy shift tV is defined to be

a positive quantity. The activated transition will now be

described in its simplest form, viz. for U=kT q 1: This

implies that at low temperatures even for a small stress the

backward transition rate n2 can be neglected with respect to

nþand the relaxation time can be approximated by

1

d
¼ n exp 2

ðU 2 ltlVÞ

kT

� �
ð7Þ

Hence, Eq. (5) becomes

dN1

dt
¼ 2

N1

d
ð8Þ

For constant ltl the solution of this equation is given by

N1 ¼
N

2
exp 2

t

d

� �
ð9Þ

As for the derivation of Eqs. (7)–(9) only the transitions

1 ! 2 have been counted, these equations do not describe

recovery processes, where the transitions 2 ! 1 are

important as well. These approximations have been made

for convenience’s sake, but neither imply a limitation for the

model, nor are essential to the results of the calculations. Eq.

(7) is the well known formula for the relaxation time of an

Eyring process. In Fig. 8 the relaxation time for this plastic

shear transition has been plotted versus the stress for two

temperature values. It can be observed from this figure that

in the limit of low temperatures, the relaxation time changes

very abruptly at the shear yield stress ltyl ¼ U=V: Below

this stress the relaxation time is very long, which corre-

sponds with an approximation of elastic behaviour. At the

shear yield stress the relaxation time becomes suddenly very

short. Thus in an experiment at a constant stress rate all

transitions occur almost immediately at the shear yield

stress. This critical behaviour closely resembles the ideal

plastic behaviour. This can be expected for a polymer far

below the glass transition temperature where the mobility of

the chains is low. At a high temperature the transition is a

smoother function of the applied stress. This behaviour may

be expected for a polymer close to the glass transition

temperature. In this case the backward transitions should

Fig. 7. (a) The Eyring reduced time model involves the activated site model

for plastic and viscoelastic shear deformation of adjacent chains ðt . 0Þ:

(b) The activated shear transition for the modelling of the viscoelastic and

plastic shear deformation of a domain consisting of parallel aligned chain

segments.
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also be taken into account. This different character in the

two temperature limits renders the Eyring process very

suitable for modelling the coupled yield and viscoelastic

deformation of fibres in the glassy state.

If the applied shear stress varies during the experiment,

e.g. a tensile test at a constant strain rate, the relaxation time

of the activated transitions changes during the test. This is

analogous to the idea of a reduced time, which has been

introduced to model the acceleration of the relaxation

processes due to the deformation. It is proposed that the

reduced time is related to the transition rate of an Eyring

process [13–15]. The differential Eq. (8) for the transition

rate is rewritten as

dN1

dtu

¼ 2N1 ð10Þ

with the reduced time tu

dtu ¼
dt

d
ð11Þ

Thus

tu ¼
ðt

0
n exp 2

ðU 2 ltðt 0ÞlVÞ

kT

� �
dt 0 ð12Þ

As the viscoelastic and plastic shear strain, ep ¼

ltanðup 2QÞl; is assumed to be proportional to N=2 2 N1

it follows from Eqs. (10) and (11) that

ep ¼ 1
2

I½1 2 expð2tuÞ� ð13Þ

The magnitude of the activated transition is denoted by I;

where I ¼ cNand c an arbitrary constant. At temperatures

far below the glass transition temperature the transitions

with an energy U will relax suddenly and almost completely

at a tensile shear stress ltyl ¼ U=V: In order to describe a

shear stress vs. strain curve as drawn in Fig. 3, it is proposed

to describe the viscoelastic and plastic shear deformation of

a domain by a transition density function IðUÞ: Hence,

following Eq. (4) the total shear strain of a domain is given

by

le13ðtÞl ¼ ltanðuðtÞ2QÞl

¼
ltðtÞl
2g

þ
1

2

ð1

0
IðUÞ½1 2 expð2tuÞ�dU ð14Þ

with tu calculated from the loading history with Eq. (12). In

this formula, the elastic shear deformation is described by a

linear relation.

For the analysis of formula (14) a shape for the transition

density function should be assumed. This function deter-

mines the details of the viscoelastic and yield behaviour.

First it will be assumed that IðUÞ has the simple flat shape

shown in Fig. 9. A flat shape is a realistic approach for

oriented crystalline or semicrystalline polymers such as

Nylon-6 and PpPTA, and is very suitable to illustrate the

qualities of Eq. (14) [21,22]. The step at U ¼ U0 causes a

yield point in the shear stress vs. shear strain curve. The

density function has been cut off at an energy Um; which has

been chosen such that it does not influence the results of the

calculations. Hence, the integration range effectively is

½U0;Um�:

5. Extension at a constant rate of stress

Most tensile tests are performed at a constant rate of

strain. For mathematical convenience, Eq. (14) will be

analysed for a constant rate of stress. For the shear stress vs.

shear strain curves of polymer fibres in the glassy state this

does not make much difference. Eq. (14) has been analysed

for three values of the stress rate a ¼ 0:01; 0.05 and

0.25 GPa s21 and the parameter values: kT ¼ 0:4 £ 10220 J

ðT ¼ 17 8CÞ; V ¼ 250 £ 10230 m3; ½U0;Um� ¼ ½2; 20� £

10220 J, g ¼ 2 GPa; ty ¼ 0:08 GPa and I0 ¼ 0:02 £ 1020 �

J21: The results have been plotted in Fig. 10. Above the

yield point the shear stress vs. shear strain curves follow

parallel curves. Due to the particular choice for IðUÞ a

straight line is obtained. Using the equations of the

continuous chain model and Eq. (14) for the shear

deformation of the domains, the typical parallel shear stress

 

 

Fig. 8. The relaxation time of an Eyring process as a function of the stress,

for a low and a high temperature.

Fig. 9. The energy density function IðUÞ ¼ I0:
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vs. shear strain curves as shown in Fig. 3 can be reproduced.

It is noted that at the moderately low temperature used for

the calculation the onset of the calculated yield is rather

smooth. This is much like the experimentally observed yield

behaviour, whereas a critical yield stress as has been pre-

viously used in the calculation of the tensile curve of a fibre,

gives rise to a rather sharp transition at the yield strain [5].

The temperature dependence of the stress vs. strain curves

calculated with Eq. (14) has been shown in Fig. 11. At low

temperature a yield point is predicted which disappears with

increasing temperatures. Presumably, by including also

backwards transitions the disappearance of the yield will

proceed more rapidly. This behaviour is very similar to the

behaviour of polymer fibres. Below the glass temperature a

pronounced yield point can be observed, which disappears

at the glass transition temperature.

The slope of the shear stress vs. shear strain curve above

the yield point, 2gm; calculated with Eq. (14) is given by

2gm ¼
2g

1 þ gI0V
ð15Þ

The yield point can be defined by the intersection of the

elastic line with slope 2g below the yield point and the

straight line with slope 2gm above the yield point. Using this

definition it can be derived from Eq. (14) that the yield point

is given by

ty ¼
U0

V
þ

kT

V
2xþ log

l _tlV
nkT

� �� �
ð16Þ

with x < 0:57722 the Euler constant and _t the stress rate.

This formula holds only for U=kT q 1 and ltlV=ðnkTÞ ,

expðxÞ: Eq. (16) is similar to the formula for the strain and

temperature dependence of the yield point calculated with

the thermally activated viscosity proposed by Bauwens

and Eyring [8,13,14]. It has been shown by Bauwens and

many other workers that the strain rate and temperature

dependence of the yield stress of many polymers follow the

Eyring equation [8,12].

6. Creep and stress relaxation

Because during a creep experiment the orientation dis-

tribution of the chains progressively contracts, the shear

stress t ¼ 2sf sin u cos u is in principle a function of time.

However, usually the change of angle is very small,

allowing the approximation

t ¼ 2sfsin u0 cos u0 ð17Þ

where u0 is the orientation angle of the only elastically

deformed domain at t ¼ 0: Thus the shear stress acting on

the domain is assumed to be constant during creep [6].

Using Eq. (14) an expression for the creep will be derived

for a creep shear stress above the creep shear yield stress and

for large t: Furthermore, a flat transition density function is

used or IðUÞ ¼ I0 on the interval ½U0;Um� and IðUÞ ¼ 0

elsewhere. This yields the following equations for the total

creep shear strain including the elastic contribution

le13ðtÞl ¼
ltl
2g

þ
I0

2

ðUm

U0

½1 2 expð2tuÞ�dU ð18Þ

with

tu ¼ nt exp 2
U

kT

� �
exp

ltlV
kT

� �
ð19Þ

The calculation involves the integral

f1ðtÞ ¼
ðUm

U0

expð2tuÞdU ð20Þ

which after the transformation x ¼ tu and dU ¼ 2kTd

 

Fig. 10. The calculated shear stress vs. strain curve as a function of the

stress rate. Above the yield point the curves follow parallel lines. The

values of the parameters used in the calculations are kT ¼ 0:4 £ 10220 J;

V ¼ 250 £ 10230 m3; ½U0;Um� ¼ ½2; 20� £ 10220 J; g ¼ 2 GPa; ty ¼ 0:08

GPa; I0 ¼ 0:02 £ 1020 J21; a ¼ 0:01; 0.05 and 0.25 GPa s21.

 

Fig. 11. The calculated shear stress vs. strain curve as a function of the

temperature calculated with V ¼ 250 £ 10230 m3; ½U0;Um� ¼ ½2; 20� £

10220 J; g ¼ 2 GPa; I0 ¼ 0:02 £ 10220 J21; a ¼ 0:01; kT ¼ 0:1; 0.2, 0.4

and 0.8 £ 1020 J.
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½logðxÞ� becomes

f1ðtÞ ¼ 2kT
ðx2

x1

expð2xÞd½logðxÞ�

¼ 2kT
ðx2

x1

d½expð2xÞlogðxÞ� þ
ðx2

x1

logðxÞexpð2xÞdx

� �

ð21Þ

with the boundaries

x1 ¼ nt exp
ltlV
kT

� �
exp 2

U0

kT

� �
and x2

¼ nt exp
ltlV
kT

� �
exp 2

Um

kT

� �
ð22Þ

For large t and finite U0 the term of the first integral on

the right-hand side of Eq. (21) expð2x1Þlnðx1Þ! 0; while

for large Um of this integral the term expð2x2Þ! 1: With

these assumptions the second integral on the right-hand side

can be approximated by

kT
ðx2

x1

logðxÞexpð2xÞdx < 2kT
ð1

0
logðxÞexpð2xÞdx

¼ kTx ð23Þ

where x < 0:57722… is the Euler constant. Expression (21)

now becomes

f1ðtÞ ¼ 2kT xþ logðntÞ þ
ðltlV2 UmÞ

kT

� �
ð24Þ

so that we find from Eqs. (18), (20), (23) and (24) for the

total shear creep strain

le13ðtÞl ¼
ltl
2g

þ
1

2
kTI0 xþ logðntÞ þ

ðltlV2 U0Þ

kT

� �
ð25Þ

The true shear creep strain can be written as

levðtÞl ¼ le13ðtÞl2
ltl
2g

¼ e0 þ
1

2
kTI0 logðtÞ ð26Þ

with

e0 ¼
1

2
kTI0 xþ logðnÞ þ

ltlV2 U0

kT

� �
ð27Þ

Thus for a flat transition density function the calculated

shear creep strain is proportional to the logarithm of the

time, which corresponds with the creep behaviour of most

polymer fibres in the glassy state.

At low shear strain and small creep times deviations from

the logarithmic creep law have been observed as shown in

Fig. 4. In order to analyse the creep for small values of t and

t the shear creep strain is calculated by the numerical

integration of Eq. (18) with a constant value for the applied

shear stress t: The result has been plotted in Fig. 12a. For a

shear stress below the yield point the creep strain follows a

concave curve versus the time, which agrees with the creep

of PpPTA and PET below the yield point, see Fig. 4. As

shown by Eq. (25) and by Fig. 12a the creep shear strain for a

flat transition density function is calculated to be indepen-

dent of the shear stress, which is not in agreement with the

observations [6].

As has been shown in Ref. [6] that the time dependent

part of the fibre strain is obtained from the time dependent

contribution of the shear strain of the domain according to

e fðtÞ ¼ 2
sin u0

cos Q
evðtÞ ð28Þ

For well-oriented fibres sin u0 < tan u0 and as shown in

Ref. [3] the orientation angle immediately after loading is

well approximated by the analytical function

tan u0 ¼
tan Q

1 þ
sf

2g

� � ð29Þ

Hence, from Eqs. (26), (28) and (29) it follows that

the calculated stress dependence of the logarithmic creep

 

              
              
              
              

Fig. 12. (a) The calculated creep shear strain of a domain for kT ¼

0:4 £ 10220 J; V ¼ 1250 £ 10230 m3; ½U0;Um� ¼ ½10; 100� £ 10220 J;

IðUÞ ¼ I0 ¼ 0:01 £ 1020 J21; for t ¼ 0:06; 0.08 and 0.16 GPa, ty ¼ 0:08

GPa: (b) The calculated shear creep strain of a domain for kT ¼

0:4 £ 10220 J; V ¼ 1250 £ 10230 m3; ½U0;Um� ¼ ½10; 100� £ 10220 J;

IðUÞ ¼ 0:01ðU=U0Þ £ 1020 J21; for t ¼ 0:08; 0.16 and 0.32 GPa, ty ¼ 0:08

GPa:
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coefficient of a fibre for a flat transition density function,

IðUÞ ¼ I0; is given by the factor ð1 þ sf =2gÞ21: This is

different from the result derived and experimentally

confirmed in a previous paper [6]. There it was derived

that assuming a linear viscoelastic simple shear mechanism

according to Eq. (12), the logarithmic creep rate of the fibre

is given by

de fðtÞ

d½logðtÞ�
¼

j1
2

sf sin2 Q

1 þ
sf

2g

� �3
ð30Þ

However, a flat density transition function is not the only

function that yields a logarithmic time dependence of the

creep. Fig. 12b presents the creep shear strain numerically

calculated with Eq. (18) for the transition density function

IðUÞ ¼ 0:01U=U0: For three values of the shear stress 0.08,

0.16, 0.32 GPa the shear creep rate is 0.012, 0.021 and 0.039

per decade, respectively. Calculation of the fibre creep rate

using Eq. (28) yields then approximately the same stress

dependence as given by Eq. (30). A similar result can also

be derived analytically as shown in the Appendix. Thus the

exact form of the logarithmic creep coefficient depends on

the shape of the plastic transition density function IðUÞ: This

can be demonstrated by analysis of the retardation spectrum.

In the theory of linear viscoelasticity the time dependent

shear compliance jðtÞ is written in terms of a continuous

retardation spectrum LðdÞ

jðtÞ ¼ j0 þ
ð1

0

LðdÞ

d
1 2 exp 2

t

d

� �� �
dd ð31Þ

For a logarithmic creep behaviour LðdÞ should be

constant. Using Eq. (7) for the relaxation time d in combi-

nation with Eq. (14), it is easily shown that for a stress step

function at t ¼ 0 the retardation spectrum for a density

function IðUÞ is given by

LðdÞ ¼ kTIðUÞ with U ¼ kT logðndÞ þ ltlV ð32Þ

So, the transition density function IðUÞ ¼ I0 yields a

constant retardation spectrum and thus a logarithmic creep

behaviour versus the time. The creep behaviour during a

time interval t is determined by LðdÞ on the interval ½0; t�:

Hence, it can be concluded from Eq. (32) that the creep

behaviour on an interval ½0; t� is determined by the shape

of IðUÞ on the interval DU ¼ ½ltlV; kT logðntÞ þ ltlV�: A

logarithmic creep law can be expected when IðUÞ is con-

stant over this interval. As DU is proportional to kT ; this

implies that at low temperatures a logarithmic creep law can

be expected, which is independent of the shape of IðUÞ: At

higher temperatures the time dependence of the creep can be

dependent on the shape of IðUÞ yielding concave or convex

creep curves versus the logarithm of the time.

The calculation of the stress relaxation rate is somewhat

tiresome because eðtÞ has been expressed as a function of

tðtÞ: It can be shown that for a flat transition density function

the relaxation is given by

ltðtÞl ¼ t0 2
kTgI0

1 þ gI0V
logðtÞ ð33Þ

for a shear stress larger than the shear yield stress. It is

easily seen from Eqs. (15), (26), (27) and (33) that the

ratio between the logarithmic relaxation coefficient and the

logarithmic creep coefficient is given by the mechanical

modulus gm: This surprising result agrees with the experi-

mental results presented in Ref. [7] and it is an indication

that indeed the viscoelastic and yield deformation are due to

a single mechanism of activated shear transitions.

7. The response to complex loading schemes

Eq. (14) explains the response of the fibre to a stepwise

increased stress as well. The creep at a certain stress t1 is

caused by the transitions with an activation energy approxi-

mately in the interval ½t1V; t1Vþ kT logðntÞ�; where t is

the total creep time. During the creep, the transitions with

these energies relax, but the transitions with an energy much

higher are not effected at all. The creep due to a next step,

increasing the stress to t2 is caused by transitions with an

activation energy of about U ¼ t2V; with t2 . t1: If t2V .

t1Vþ kT logðntÞ; the transitions at an energy U ¼ t2V

are still unrelaxed after the period of creep at t1: In that

case, the creep behaviour at the second level is independent

of the creep at the previous step. Thus, provided that

t2V2 t1V . kT logðntÞ; Eq. (14) predicts that at each step

the creep will be equal to the creep in a normal creep

experiment at that stress level. This behaviour, which is in

disagreement with superposition, was observed for PpPTA

fibres, see Fig. 5.

The response of polymer fibres to a strain–relaxation–

strain experiment can be explained by a similar argument. In

this experiment, the strain is first increased at a constant

strain rate, at a stress s0 the deformation is stopped and a

relaxation experiment is performed during a time t1; after

which the strain is increased at a constant strain rate up to

failure. During the first period of constant strain rate a

dynamic equilibrium is created between the deformation

and the activated transitions. At the moment that the defor-

mation is stopped the fibre is out of equilibrium, there are

many activated transitions with a rather short relaxation

time, which have not relaxed yet. During the relaxation

period, these transitions take place and a new equilibrium is

developed. At the end of the relaxation period only very

slow transitions with a large relaxation time occur. This

implies that at the beginning of the second period of

deformation at a constant strain rate the fibre is almost

elastic. Increasing the stress, activated transitions with

higher energy begin to relax, which cause a kind of yield

point. After the initial, almost elastic, part the stress vs.

strain curve continues along the original stress vs. strain

curve of the fibre. This experiment has been simulated
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numerically substituting the period of a constant strain, by a

period of constant stress, which is much easier for the

calculation. The result has been presented in Fig. 13. The

calculated behaviour shown in this figure is very similar to

the observed curves presented in Fig. 6.

Eq. (14) has been derived for shear transitions in only one

direction. For the calculation of the response to more

complicated loading schemes, such as the recovery after the

load has been removed, shear transitions in both directions

should be considered. In addition it is necessary to specify

the density function I as a function of the activation energies

Uf for the forward transition 1 ! 2 and the activation

energies Um for the backward transition 2 ! 1. With a

proper choice of the density function IðUf ;UmÞ it will be

possible to give detailed predictions of the response of

polymer fibres to complex loading schemes. It has been

observed that the yield deformation is not completely

permanent, but partly recoverable [7]. It has also been

shown that after the fibre has been unloaded, initially the

stress vs. strain curve shows no yield, but after a longer

waiting time the yield point slowly reappears [1]. This semi-

plastic deformation can be understood, supposing that the

activation energy of the second state of a shear transition U2

is in the order of kT : In that case, the second state is only

stable for the loaded fibre. Unloading the fibre this state

becomes unstable again and the shear transition will be

reversed, resulting in the recovery of the yield deformation.

As during this recovery the occupation of state 1 increases it

can be understood that due to the activation energy Uf for

the transition 1 ! 2, the yield point slowly returns after the

fibre has been unloaded.

In an earlier paper, we presented the continuous chain

model for the description of the stress versus strain curve of

polymer fibres with yield [5]. In this model, the plastic

behaviour of the fibre is realised by adding a plastic

component to the shear deformation of the domain, being

the basic element of the model. As Eq. (14) describes the

viscoelastic as well as the plastic properties of the domain,

the continuous chain model allows in a similar fashion the

calculation of the response of a polymer fibre to complex

loading patterns.

8. Conclusions

It has been shown that the viscoelastic and yield

deformation of a polymer fibre can be described by a

process of activated shear transitions with a distribution for

the activation energies. These shear transitions govern the

time dependent and plastic displacement of the chains. The

proposed model gives a correct description of the experi-

mentally observed strain rate dependence of the yield

deformation. The relation between creep and stress

relaxation, and the response to the more complex loadings

has been reproduced. It has been shown that at a constant

strain rate, above the maximum preceding stress, the

deformation of the fibre returns to the normal stress vs.

strain curve. It is concluded that the main features of the

time dependent and yield behaviour of polymer fibres in

the glassy state can be described by the proposed theory.

This model in conjunction with the continuous chain model

may provide a basis for a constitutive equation for the

deformation of polymer fibres, which describes the defor-

mation of the fibre due to arbitrary loading patterns.
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Appendix A

The calculation of the fibre creep rate for the transition

density function IðUÞ ¼ I0U begins with the derivation of

the shear creep strain

le13ðtÞl ¼
ltl
2g

þ
I0

2

ðUm

U0

U½1 2 expð2tuÞ�dU ð34Þ

with

tu ¼ nt exp 2
U

kT

� �
exp

ltlV
kT

� �
¼ q exp 2

U

kT

� �
ð35Þ

The calculation of Eq. (34) involves the integral

f ðtÞ ¼
ðUm

U0

U½expð2tuÞ�dU ð36Þ

 

 

Fig. 13. The calculated response to an alternating period of a constant strain

rate and constant stress. Also the calculated curve returns to the normal

stress vs. strain curve. The values of the parameters are kT ¼ 0:4 £ 10220 J;

V ¼ 250 £ 10230 m3; ½U0;Um� ¼ ½2; 100� £ 10220 J; g ¼ 2 GPa; I0 ¼

0:02 £ 1020 J21; a ¼ 0:02 GPa s21; for 0:0 , t , 7 s t ¼ at; for 7 # t #

240 s t ¼ 0:14 GPa; for 240 # t # 250 s t ¼ at:
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After transformation tu ¼ x and dU ¼ 2kTd½logðxÞ�

Eq. (36) becomes

f ðtÞ ¼ 2ðkTÞ2
ðx2

x1

expð2xÞ½logðqÞ2 logðxÞ�d½logðxÞ� ð37Þ

with the boundaries

x1 ¼ nt exp
ltlV
kT

� �
exp 2

U0

kT

� �
¼ q exp 2

U0

kT

� �
ð38Þ

and

x2 ¼ nt exp
ltlV
kT

� �
exp 2

Um

kT

� �
¼ q exp 2

Um

kT

� �
ð39Þ

Eq. (37) can be written as

f ðtÞ ¼ 2ðkTÞ2½ f2ðtÞlogðqÞ2 f3ðtÞ� ð40Þ

with

f2ðtÞ ¼
ðx2

x1

expð2xÞd½logðxÞ� ð41Þ

and

f3ðtÞ ¼
ðx2

x1

expð2xÞlogðxÞd½logðxÞ� ð42Þ

The integral f2ðtÞ has been evaluated before, see Eqs.

(21)–(24), applying the assumptions that for large t and

finite U0 the function expðx1Þlnðx1Þ! 0 and for large Um the

function expð2x2Þ! 1: This yields

f2ðtÞ ¼ xþ logðntÞ þ
ðltlV2 UmÞ

kT
ð43Þ

where x < 0:57722… is Euler’s constant. The integral f3ðtÞ

can be written as

2f3ðtÞ ¼ expð2x2Þ½logðx2Þ�
2 2 expð2x1Þ½logðx1Þ�

2

2
ðx1

x2

expð2xÞ½logðxÞ�2dx ð44Þ

Using the same assumptions for t; U0 and Um made

above, the integral in Eq. (44) becomes

ð1

0
expð2xÞ½logðxÞ�2dx ¼

p2

6
þ x2 ð45Þ

Thus

2f3ðtÞ ¼ logðntÞ þ
ðltlV2 UmÞ

kT

� �2

2
p2

6
2 x2 ð46Þ

After inserting Eqs. (43) and (46) in Eq. (40) the shear

creep strain is found to be

le13ðtÞl ¼
ltl
2g

þ
I0

2

�
ðkTÞ2

�
logðntÞ

�
1=2logðntÞ

þ
ltlV
kT

þ x

�
þ

ltlV
kT

� ltlV
2kT

þ x

�

þ
p2

12
þ

x2

2

�
2

U2
0

2

�
ð47Þ

For

ltlV
2kT

q x and
ltlV
kT

q 1=2logðntÞ ð48Þ

Eq. (47) becomes

le13ðtÞl <
ltl
2g

þ
I0

2

�
ðkTÞ2

�� ltlV
kT

��
logðntÞ þ

ltlV
2kT

�

þ
p2

12
þ

x2

2

�
2

U2
0

2

�
ð49Þ

So we find for the shear creep rate

dle13ðtÞl
d½logðtÞ�

¼
I0

2
kTVltl ð50Þ

The creep rate of the fibre is given by Eq. (28) so we

derive

de fðtÞ

d½logðtÞ�
¼

I0

2

kTVltlsin u0

cos Q
ð51Þ

Because ltl ¼ sf sin u0 cos u0 Eq. (51) can be written as

de fðtÞ

d½logðtÞ�
¼

I0kTV

2

sf sin2 u0 cos u0

cos Q
ð52Þ

Using the analytical approximation of u0 given by

Eq. (29) and the approximation

sin u0 < tan u0 for well-oriented fibres, we find for the

fiber creep rate

de fðtÞ

d½logðtÞ�
¼

I0kTV

2

sf sin2 Q

1 þ
sf

2g

� �2
ð53Þ

For j1 ¼ I0kTV this equation is similar but not identical

to Eq. (30). This is caused by the fact that in the derivation

of Eq. (30) presented in Ref. [6] the change Du ¼ uðtÞ2 u0

of the orientation angle during creep is calculated by

considering the contribution of both the viscoelastic

increase and the elastic decrease of the shear deformation.

For the small creep strains which occur during creep of well-

oriented fibres Du is very small, so the terms

e13ðtÞ ¼ tanðuðtÞ2QÞ ¼ tanðDuþ ðu0 2QÞÞ and tðtÞ ¼

tðuðtÞÞ ¼ tðDuþ u0Þ can be developed up to a linear term in

Du: By inserting these approximations in Eq. (49) and using

j1 ¼ I0kTV Eq. (30) is obtained.
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